Are wild monkeys becoming a reservoir for Zika virus in the Americas

first_img When the Zika virus exploded in the Americas in 2015, it quickly became an international scare: Pregnant women, bitten by infected mosquitoes, could pass the virus to their babies, some of whom suffered brain malformations as a result. But the epidemic eventually wound down, thanks in part to large swaths of populations developing immunity. Now, scientists in Brazil have discovered that more than a third of the wild monkeys they tested for Zika have been infected, the strongest evidence yet that a “reservoir” for the disease outside of humans has the potential to form.“We found this phenomenon in two different cities at the same time, so [infected monkeys] are more common than we think,” says Maurício Lacerda Nogueria, a virologist at the São José do Rio Preto School of Medicine in Brazil, who led the new study.Even though his team is still a long way from showing that the monkeys spread the virus between themselves—which is required for a reservoir to form—and then reinfected humans through a mosquito intermediary, he says the new study shows the potential is there. If a reservoir of Zika virus in wild monkeys does develop in the Americas, it could set up a “sylvatic cycle” in which the pathogen repeatedly retreats into remote forests and then jumps back into cities, starting new human outbreaks. Just such a sylvatic cycle occurs between monkeys, mosquitoes, humans, and the Zika virus in Africa, as well as with its cousin yellow fever in Africa and the Americas. Are wild monkeys becoming a reservoir for Zika virus in the Americas? A Brazilian study found Zika virus in many wild marmoset monkeys, which could become part of a threatening transmission cycle for humans. By Jon CohenOct. 31, 2018 , 11:55 AM Sign up for our daily newsletter Get more great content like this delivered right to you! Country Leszek Leszczynski/Wikimedia Commons (CC BY 2.0) center_img Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Click to view the privacy policy. Required fields are indicated by an asterisk (*) Email Two years ago, a different research group identified Zika in three capuchin and four marmoset monkeys in Brazil using a polymerase chain reaction (PCR) test, which detects viral genetic pieces. But these monkeys, several of which were pets, lived in close proximity to humans. The new study examined wild monkeys that live near two cities: São Paulo and Belo Horizonte.The researchers and their colleagues analyzed the carcasses of 82 marmosets and capuchins that had been killed either by people or wild animals. In 32 of the monkeys, at least one tissue tested positive for Zika on PCR, they report this week in Scientific Reports. “The new findings are quite significant,” says co-author Nikos Vasilakis, an arbovirologist at the University of Texas Medical Branch (UTMB) in Galveston. When the researchers sequenced the Zika virus from four marmosets so they could compare it to the Americas strain circulating in humans, they found a close match. And they showed a geographic link between Zika-infected mosquitoes and the monkeys.Scott Weaver, an arbovirus specialist at UTMB who was not involved with the study, says the new findings add support to the “vertebrate half of the equation” needed to prove that a sylvatic cycle exists. He notes that an experiment he co-authored with Vasilakis lends further support. They found that—in three infected different New World monkeys—the Zika virus could copy itself to high levels in the animals’ blood; theoretically, these animals thus could easily transmit the virus to mosquitoes that bit them.But researchers have yet to prove the mosquito half of the equation. Aedes aegypti, the main species responsible for the Brazilian outbreak, preferentially feeds on humans and would only bite monkeys if its favorite food was in short supply. A sylvatic cycle would require a mosquito species that typically feeds on monkeys and supports growth of the Zika virus. The virus then could survive by moving between monkeys and mosquitoes, without a human intermediary, for years. No such mosquito has been found. What’s more, if Zika did move only between monkeys and then jumped back into humans, the virus would have a different genetic signature than those found in previously infected humans; genetic analyses have found no such changes over time.The lack of a sylvatic cycle would be good news for disease eradication. No vaccine for Zika yet exists, but an effective one, if widely used, could chase the virus out of the continent until an infected human imports it again. On the other hand, a sylvatic cycle would make it impossible to eradicate Zika, even with mosquito control and an effective vaccine, Vasilakis says. “The virus will be probing the human population all the time until it finds enough susceptible people to cause an outbreak,” he says.Vasilakis’s hunch is that the monkeys he and his colleagues studied likely were not part of a sylvatic cycle but were bitten by mosquitoes that regularly dined on the many infected humans who lived near their habitat. “I suspect they’re victims of opportunity,” he says. “But this is how things start.”last_img

Have any Question or Comment?

Leave a Reply

Your email address will not be published. Required fields are marked *